Application of Laplace Decomposition Method to Solve Nonlinear Coupled Partial Differential Equations
نویسندگان
چکیده
Abstract: In this article, we develop a method to obtain approximate solutions of nonlinear coupled partial differential equations with the help of Laplace Decomposition Method (LDM). The technique is based on the application of Laplace transform to nonlinear coupled partial differential equations. The nonlinear term can easily be handled with the help of Adomian polynomials. We illustrate this technique with the help of three examples and results of the present technique have closed agreement with approximate solutions obtained with the help of Adomian Decomposition Method (ADM).
منابع مشابه
Application of Laplace decomposition method for Burgers-Huxley and Burgers-Fisher equations
In this paper, we apply the Laplace decomposition method to obtain a series solutions of the Burgers-Huxley and Burgers-Fisher equations. The technique is based on the application of Laplace transform to nonlinear partial differential equations. The method does not need linearization, weak nonlinearity assumptions or perturbation theory and the nonlinear terms can be easily handled by using the...
متن کاملCompare Adomian Decomposition Method and Laplace Decomposition Method for Burger's-Huxley and Burger's-Fisher equations
In this paper, Adomian decomposition method (ADM) and Laplace decomposition method (LDM) used to obtain series solutions of Burgers-Huxley and Burgers-Fisher Equations. In ADM the algorithm is illustrated by studying an initial value problem and LDM is based on the application of Laplace transform to nonlinear partial differential equations. In ADM only few terms of the expansion are required t...
متن کاملNumerical solution of time-dependent foam drainage equation (FDE)
Reduced Differental Transform Method (RDTM), which is one of the useful and effective numerical method, is applied to solve nonlinear time-dependent Foam Drainage Equation (FDE) with different initial conditions. We compare our method with the famous Adomian Decomposition and Laplace Decomposition Methods. The obtained results demonstrated that RDTM is a powerful tool for solving nonlinear part...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملAnalytical-Approximate Solution for Nonlinear Volterra Integro-Differential Equations
In this work, we conduct a comparative study among the combine Laplace transform and modied Adomian decomposition method (LMADM) and two traditional methods for an analytic and approximate treatment of special type of nonlinear Volterra integro-differential equations of the second kind. The nonlinear part of integro-differential is approximated by Adomian polynomials, and the equation is reduce...
متن کامل